Skip to content
Papers presented at SGSMA 2019 Conference
- Xiangtian Zheng, Bin Wang, Le Xie: “Synthetic Dynamic PMU Data Generation: A Generative Adversarial Network Approach“
- He Yin, Wenpeng Yu, Apsana Bhandari, Wenxuan Yao, Linwei Zhan: “Advanced Universal Grid Analyzer Development and Implementation”
- Apsana Bhandari, He Yin, Yilu Liu, Wenxuan Yao, Lingwei Zhan: “Real-Time Signal-to-Noise Ratio Estimation by Universal Grid Analyzer”
- OD Naidu, Preetham Yalla, Neethu George: “Auto-reclosing Protection Scheme for Multi-Terminal Mixed Lines Using Synchrophasor Measurements”
- Justin E. Mendiola, Michael Angelo A. Pedrasa: “Detection of Pilferage in an AMI-Enabled Low-Voltage Network Using Energy Reading Anomalies”
- Biswajit Mondal, Amit Kumar Choudhury, M Viswanadh, S P Barnwal, D K Jain: “Application of PMU and SCADA data for estimation of source of forced oscillation”
- Vishal Kumar Gaur, Bhaveshkumar R. Bhalja: “Synchrophasor Based Fault Distance Estimation Method for Tapped Transmission Line”
- Prottay M. Adhikari, Luigi Vanfretti, Hossein Hooshyar: “A Reconfigurable Hardware Prototype for Pre-compliance Testing of Phasor Measurement Units”
- Ying Wang, Chao Lu, Xianran Zhang: “K-Medoids Based Typical Load Model Parameter Extraction Method”
- Piyush Warhad Pande, S. Chakrabarti, S. C. Srivastava: “Subspace Based Model Order Estimation of Low Frequency Oscillations in Power Systems Using Synchrophasor Data”
- Haoran Li, Yang Weng, Evangelos Farantatos, Mahendra Patel: “A Hybrid Machine Learning Framework for Enhancing PMU-based Event Identification with Limited Labels”
- Mohammad Farajollahi, Alireza Shahsavari, Hamed Mohsenian-Rad: “Linear Distribution System State Estimation Using Synchrophasor Data and Pseudo-Measurement”
- G. Frigo, A. Derviškadić, A. Bach, M. Paolone: “Statistical Model of Measurement Noise in Real-World PMU-based Acquisitions”
- Mohini Bariya, Keith Moffat, Alexandra Von Meier: “Empirical Noise Estimation in Distribution Synchrophasor Measurements”
- Shiyuan Wang, Payman Dehghanian, Yingzhong Gu: “A Novel Multi-Resolution Wavelet Transform for Online Power Grid Waveform Classification”
- Shijia Li, Lixi Zhang, Jean-Nicolas Paquin, Jean Bélanger, Luigi Vanfretti: “Hardware-in-the-Loop Use Cases for Synchrophasor Applications”
- Maman Ahmad Khan, Barry Hayes: “ Three Phase State Estimation in Power Distribution Networks by Integrating IEEE-1588 with Smart Meters”
- Kenta Kirihara, Jun Yamazaki, Panitarn Chongfuangprinya, Stavros Konstantinopoulos, Christoph Lackner, Joe H. Chow, Slava Maslennikov, Yilu Liu: “Speeding Up the Dissipating Energy Flow Based Oscillation Source Detection”
- Paolo Castello, Carlo Muscas, Paolo Attilio Pegoraro, Giorgio Maria Giannuzzi, Pietro Pau, Camilla Maiolini, Roberto Zaottini: “An Active Phasor Data Concentrator Suitable for Control and Protection Applications”
- Tamara Becejac, Thomas Overbye: “Impact of PMU Data Errors on Modal Extraction Using Matrix Pencil Method”
- Colton Riedel, Guoyu Fu, Donald Beyette, Jyh-Charn Liu: “Measurement System Timing Integrity in the Presence of Faults and Malicious Attacks”
- Alireza Shahsavari, Mohammad Farajollahi, Emma Stewart, Ed Cortez, Hamed Mohsenian-Rad: “A Machine Learning Approach to Event Analysis in Distribution Feeders Using Distribution Synchrophasors”
- Jason Ausmus, Ricardo Siqueira de Carvalho, Aoxia Chen, Yaswanth Nag Velaga, Yingchen Zhang: “Big Data Analytics and the Electric Utility Industry”
- A. Dervišskadić, G. Frigo, M. Paolone: “Impact of Time Dissemination Technologies on Synchrophasor Estimation Accuracy”
- Wei Trinh, Thomas Overbye: “Comparison of Dynamic Mode Decompositon and Iterative Matrix Pencil Method for Power System Modal Analysis”
- Hallvar Haugdal, Kjetil Uhlen: “Mode Shape Estimation using Complex Principal Component Analysis and k-Means Clustering”
- Srdjan Skok, Igor Ivankovic: “System Integrity Protection Schems for Future Power Transmission System Using Synchrophasors”
- Mladen Kezunovic, Cheng Qian, Christoph Seidl, Jinfeng Ren: “Testbed for Timing Intrusion Evaluation and Tools for Lab and Field Testing of Synchrophasor System”
- Isidora Radevic, Matija Naglic, Omar Mansour, Dennis Bijwaard, Marjan Popov: “Smart DFT Based PMU Prototype”
- Richard Jumar, Heiko Maaß, Uwe Kühnapfel, Veit Hagenmeyer: “Synchronized continuous high-rate time-series recording in distribution grids for accurate evaluation”
- Meng Wang, Joe H. Chow, Yingshuai Hao, Shuai Zhang, Wenting Li, Ren Wang, Pengzhi Gao, Christopher Lackner, Evangelos Farantatos, Mahendra Patel: “A Low-rank Framework of PMU Data Recovery and Event Identification”
- Farnaz Harirchi, Ramtin Hadidi, Mohammad Babakmehr, Marcelo. G. Simões: “Advanced Three-Phase Instantaneous Power Theory Feature Extraction for Microgrid Islanding and Synchronized Measurements”
- Felix Rafael Segundo Sevilla, Petr Korba, Emilio Barocio, Hector Chavez, Walter Sattinger: “Data Analytic Tool for Clustering Identification based on Dimensionality Reduction of Frequency Measurements”
- Mohammadreza Maddipour Farrokhifard, Mohammadreza Hatami, Vaithianathan Mani Venkatasubramanian: “Performance of Stochastic Subspace Identification Methods in Presence of Forced Oscillations”
- Allen Goldstein: “PMU Estimate Error Due to Low-Pass Filter Transfer Function”
- S.M. Blair, M.H. Syed, E. Guillo-Sansano, Q. Hong, C.D. Booth, G.M. Burt, Arturo Hinojos, Irving Avila: “Review of Approaches for Using Synchrophasor Data for Real-Time Wide-Area Control”
- Manohar Chamana, Stephen Bayne, Andrew Swift: “Course Development on Synchrophasor Applications at the Undergraduate and Graduate Levels”
- Sudi Xu, Jingsong Li, Hao Liu, Tianshu Bi, Jingsong Li, Shunjiang Liu: “Static and Dynamic Calibration of Phasor Measurement Units”
- Cristiano S. Carvalho, Glauco N. Taranto: “Comparison of Voltage Instability Identification Methods Based on Synchronized Measurements”
- Matthew Rhodes, Ryan Quint, Alison Silverstein: “Integrating Synchrophasor Technology into Power System Protection Applications”
- Mohd Zamri Che Wanik, Antonio Sanfilippo, Nand Singh, Abdullah Jabbar, Zhaohui Cen: “PMU Analytics for Power Fault Awareness and Prediction”