

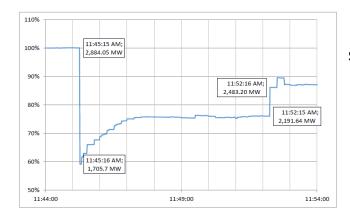
Benefits of Deploying Synchronized Measurements in the T&D Systems - Key Success Factors and Examples

Damir Novosel

President, Quanta Technology

Industry Trends and Drivers for T&D Synchronized Measurement Deployment of cost-Importance of Transmission Application Benefits and cybersecurity Growthi Roadmap products and provided to customers by **3rd parties Distribution Application Benefits and** Customer interest for greater Roadmap control of energy use business and costs regulatory Increasing expectations for reliability and power **Key Success Factors and Future Plans** quality Customer interest for sustainable options Increasing resiliency

The electric utility industry is changing

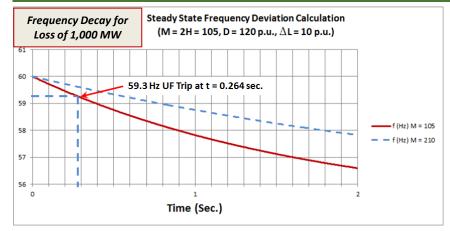


Operational Challenges of T&D Systems

- Need for fundamental changes in T&D planning, operation, protection, and control, including advanced sensors and measurement devices
- Distribution load, DER, and electrification forecasting required for meaningful T&D planning
- Large portion of generation resources are invisible to operators - it is not possible to directly control distribution
 - Inverter-based resources connected to distribution
 - Behind-the-meter distributed energy resources
- Distribution networks are no longer passive loads
 - Drastically changed daily load curve
 - Weather conditions have major impact on both consumption and distributed generation
 - Circuits exhibit very different dynamic characteristics

- Need for improved visibility and control with distribution circuit monitoring and accurate models or equivalents
- Need for increased information exchange and control action coordination between transmission and distribution networks for the reliable operation of both

Southern California Solar Resource Loss, Aug. 2016



Addressing Operational Challenges

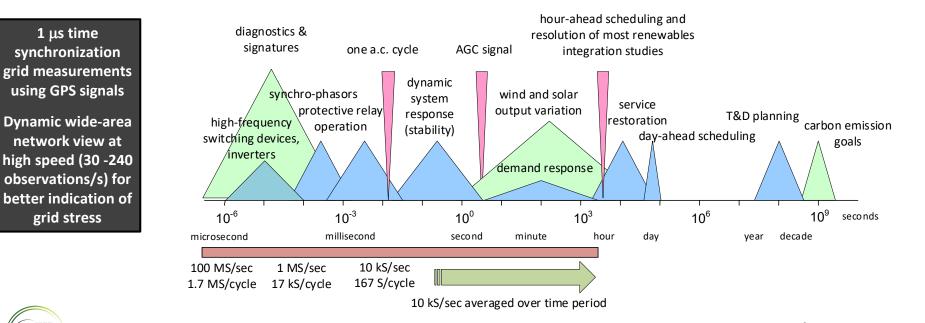
Inverter Based Resources (IBR) → Less Inertia → Things Happen Faster!

- Faster control of system dynamic changes
- Address frequency regulation requirements
- Effective load shedding with DER monitoring saves system from collapse
- Low fault currents and dynamic system changes requiring adaptive protection
- Accurate system modeling for GT&D planning studies and operations
- Etc.

Synchronized measurements - important enabling technology to address visibility and control needs

Source: IEEE/NERC report on Impact of Inverter Based Generation on Bulk Power System Dynamics and Short-Circuit Performance

Frequency excursions: Rate-of-change-of frequency proportional to inertia


 $\Delta P = -k_{in} \frac{\omega}{dt}$

Synchronized Measurements Bridge the Gap in Observability and Control

Time Scales in Operations, Planning & Report Rates

1 µs time

grid stress

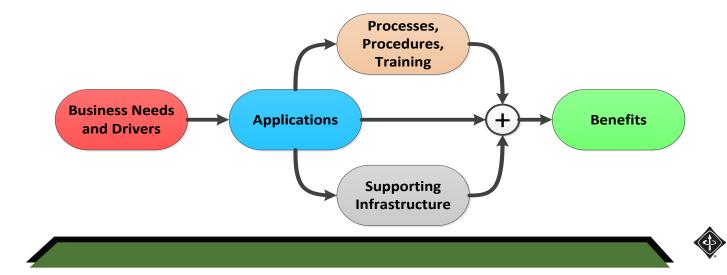
Status and Trends with Synchronized Measurement Applications

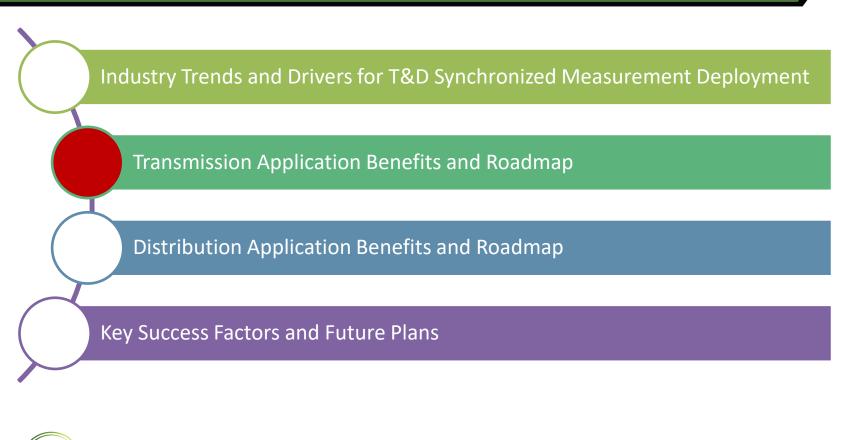
Transmission

- US, India, and others have been deploying large number of PMUs, either integrated in IEDs or stand-alone.
- Many utilities have steadily improved their synchrophasor system reliability, resilience, security, and capabilities.
- A significant percentage of systems are ready or close to ready for real-time operations.
- Efforts started on next-generation systems:
 - System-wide observability.
 - Single information visualization interface serves as data and application integration platform.
 - Measurement-based & model-based applications.
 - Access and integration with EMS/SCADA and GIS, as well as with other data such as point-on-wave, weather, fire, earthquake, etc.

Distribution

- Interest in deploying synchronized measurement technology in distribution has steadily grown
 - DOE co-funded Micro-PMU development.
 - NASPI established a Distribution Task Team.
 - IEEE started a working group on D-PMUs.
- Some deployment examples:
 - SDG&E: Developed a roadmap with use cases and successfully developed advanced SCADA for distribution and Falling Conductor Protection.
 - ComEd: Developed a T&D roadmap and piloted a selected number of applications , including D-LSE.
 - Southern Company: Piloting several applications.
 - Dominion: Plans to pilot several applications, including system improving visibility with DER, power quality, and fault location and analysis

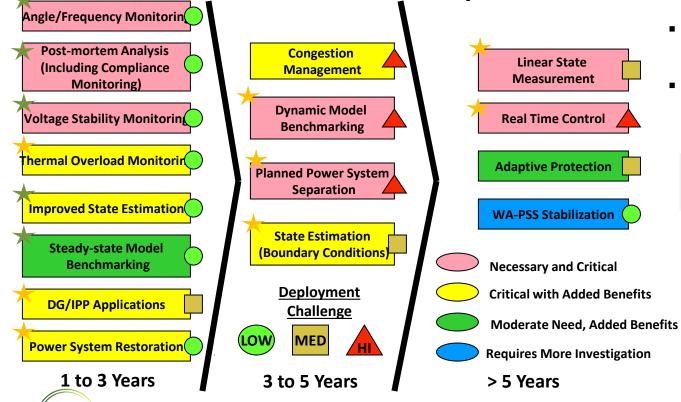



Roadmap Development Approach

- Applications are determined by business needs & drivers
- Applications dictate the supporting infrastructure requirements and deployment

Power & Energy Society

 Users need processes, procedures, and training to take the full advantage of the deployed system and applications Cost-benefit analysis to develop Near-, Mid- and Long-term plans with an impact level: Low, Medium, High 7



NASPI Roadmap 2007

Power & Energy Society*

- Developed based on CEC and DOE PMU Benefit-Cost Analysis Project.
- Served as a blueprint for successful transmission PMU deployment.
 - Presently deployed
 Limited deployment

Industry needs a roadmap for distribution synchronized measurement deployment, including benefit-cost analysis and equipment requirements

Source: NASPI

NASPI Transmission Application Requirements

Real-Time

	Application	Latency	Data Resolution	Time Window	
	Situational Awareness Dashboard	1-5 Seconds	1 sample/sec.	Snapshot	
RIOUS	Real Time Monitoring and Alarming (Angle of Separation; Voltage & Angle Profiles; MW, MVAR flows; Load-Resource Imbalance)	1-5 Seconds	1 sample/sec.	1/2 - 1 hour	dation
Real-time Applications	Frequency Stability/Islanding	1-5 Seconds	30 samples/sec.	Few Minutes	ta Vali
ear-ume	State Estimation	1-2 Minutes	30 sample/sec.	5-10 Minutes	del/Da
Ĕ	Small-Signal Stability Monitoring	5-10 Seconds	10 samples/sec.	10-15 Minutes	oW pu
	Voltage Stability Monitoring/Assessment	Few Seconds	30 samples/sec.	~ 1 hour	Analysis and Model/Data Validation
	Thermal Monitoring (Overload)	Few Seconds	30 samples/sec.	~ 1 hour	
					Disturbance

Disturbance and Data Analysis

Application	Latency	Data Resolution	Time Window
Baseline Normal Phase Angle Trends	N/A	l sample/sec.	24 hrs +
Pattern Recognition/Correlation Analysis	N/A	l sample/sec.	1 hour +
Disturbance Analysis Compliance	N/A	30 samples/sec.	1 m pre & 2 m post event
Frequency Response Analysis	N/A	10 samples/sec.	1 m pre & 2 m post event
Model Validation	N/A	30 samples/sec.	5-10 minutes
New Applications Evaluation & Limits Definition	N/A	30 samples/sec.	Application Depedant
Phasor Network performance monitoring & data quality	N/A	30 samples/sec.	24 hrs +

Vendors need users' requirements to guide development of cost-effective sensor products and systems

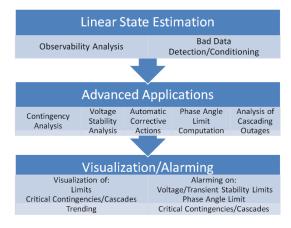
Protection and Control

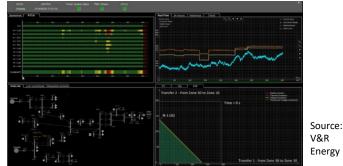
_	Application	Latency	Data Resolution	Time Window	
Control	Automatic Alarming of Remedial Action Schemes	$\sim 100 \ ms$	30 samples/sec.	\sim Minutes	
n and	Out of step protection	$\sim 100 \ ms$	30 samples/sec.	~ Seconds	
I Protection	Short-term stability control (e.g. transient stability)	~ 100 ms	30 samples/sec.	\sim Seconds	
Advanced	Long-term stability control (e.g. wide area frequecy, voltage stability)	1-5 Seconds	30 samples/sec.	~ Minutes	
₹	FACTS feedback control, Smart switch-able networks	1-5 Seconds	30 samples/sec.	~ Minutes	

Source: NASPI

Transmission Applications

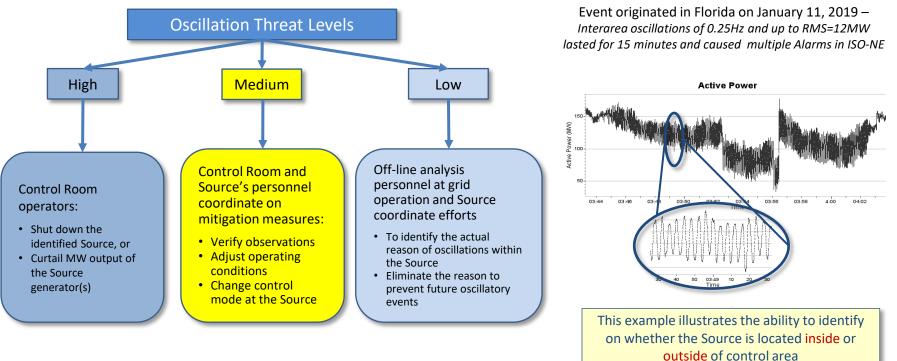
- Large number of PMUs have been and continue to be deployed to meet
 - NERC PRC-002-2 requirements
 - ISOs/RCs specified requirements for new or existing lines and generators
 - Utility's own drive to reach full observability of its transmission grid
- Offline non-real-time operations
 - Post-event analysis
 - Model validation and calibration
- Real-time operations
 - Wide-area situational awareness and control within and beyond a utility's own control area
 - Weather conditions, fire, lightning, etc.


- Protection and control
 - System Integrity Protection Systems (SIPS)
 - Black Start
 - Controlled islanding and islanding operation
 - Falling conductor detection and tripping
 - Wide-area backup protection
 - Real-time fault detection and fault location

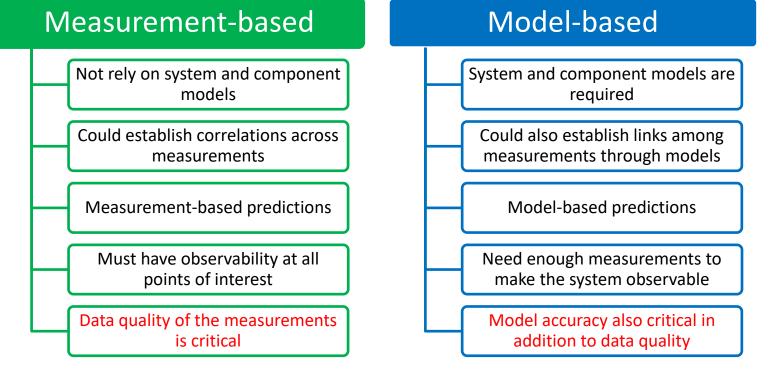


Control Room Operations

- Benefits realized in first few years of deployment
 - Comprehensive information visualization and situational awareness, with high resolution trending
 - Oscillation and frequency monitoring, event location, and source determination
 - Assist in system restoration and inter-tie breaker closing
 - Three phase information
 - Heat-map (contour) display for voltage
- Start/shutdown generators and connect/disconnect load
- Dynamic real-rime contingency analysis (RTCA), Transient Stability Analysis, Voltage Stability Analysis and margins, and Linear State Estimation
- Dispatch reactive power resources

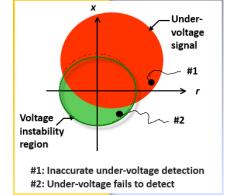


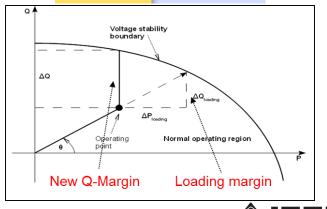
Mitigation of Oscillation



Source: Slava Maslennikov, ISO NE

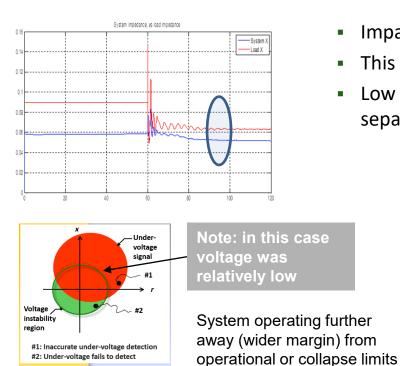
Measurement-based vs. Model-based Applications

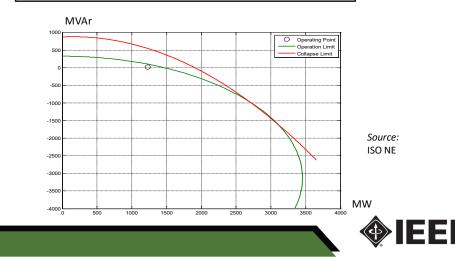




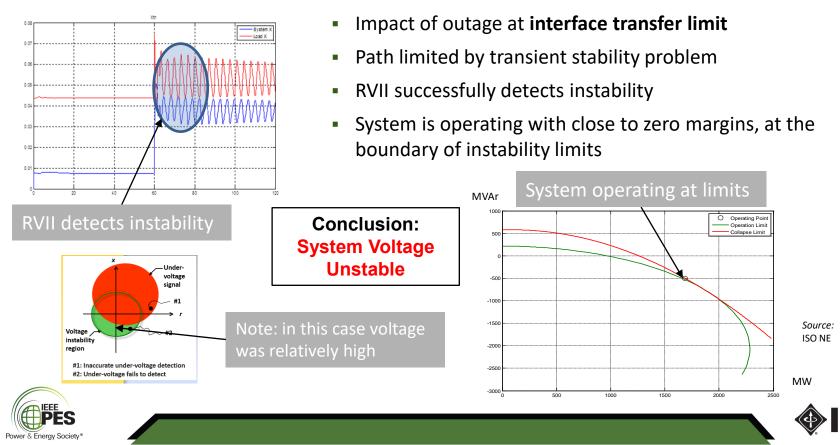
Comprehensive Voltage Stability Management

Hybrid solution is preferred


- Voltage Security Assessment
 - For pre-contingency mitigation actions
 - Accurate margins if accurate models and well-predicted scenarios
- Model-free methods using PMUs
 - Good for dynamic and fast voltage instability detection and trend monitoring
 - Able to distinguish FIDVR from voltage instability even if voltage is very low
- Hybrid: Nothing "falls between the cracks"
 - If VSA model not accurate, model-free will detect instability; converse also true
 - Could automatically trigger "out of sequence" SE/VSA on instability

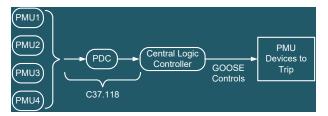


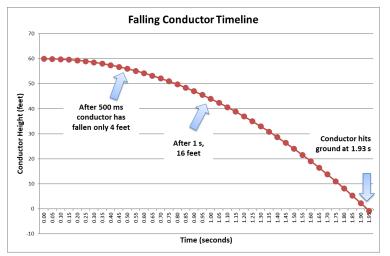
RVII Example: Security


- Impact of outage on a critical interface
- This references post outage condition
- Low voltages in the vicinity of the study zone, but clear separation between Thevenin & Load Impedance

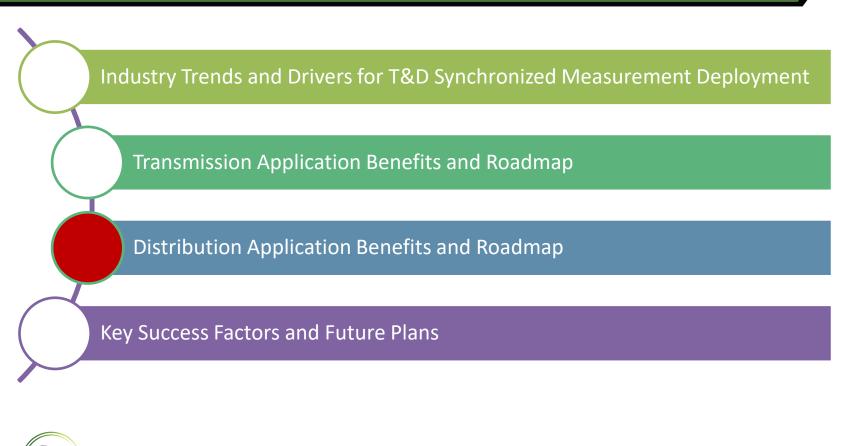
Conclusion: System Voltage Stable

RVII Example: Dependability

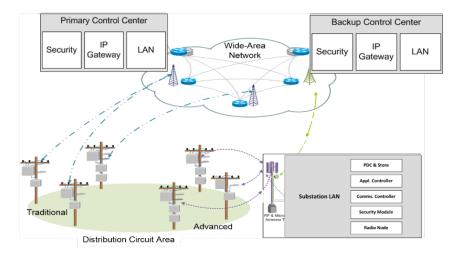



Transmission Falling Conductor Protection (TFCP)

Fire and hazard risk reduction


- Transmission falling conductor protection being developed on transmission PMU infrastructure.
- Based on current and voltage synchrophasor measurement streams.
- Current comparisons detect open conductors and faults.
- TFCP uses existing PMUs and communications (Distribution FCP needs radio system and distributed circuit PMUs).
- Initial focus on 69 kV lines.

Source: SDG&E


SDG&E Advanced SCADA for Distribution (ASD)

Addressing legacy system challenges

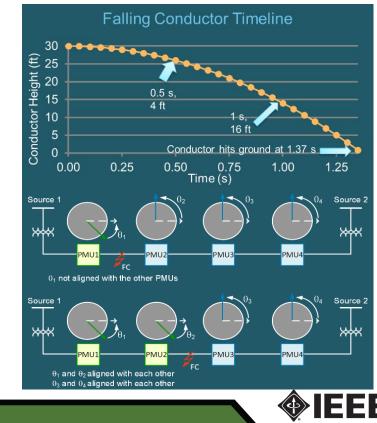
- Legacy sensors & measurement systems are failing Distribution Operations situational awareness and control needs.
- Mass of existing systems & components are difficult and expensive to manage.

What has been created

- System platform design to support 50 use cases.
- Distribution Falling Conductor Protection with Control Center operator interface is in service.
- Circuit voltage and current profile monitoring.
- Apparatus, IED, communications monitoring.
- System based on PMU-enabled circuit IEDs, fast ethernet, circuit-centric architecture, IEC 61850 GOOSE.

Source: SDG&E

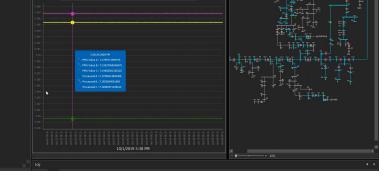
Use Case Example - Distribution Falling Conductor Protection


Source: SDG&F

Falling conductor protection using distribution PMUs and wireless WAN to detect a line break deenergizes the conductor before it hits the ground

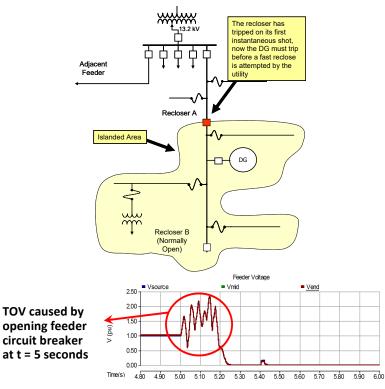
- Break is isolated in 200-500 ms uses 30 frames/s from PMUenabled IEDs on two sides of the break.
- Avoids high-impedance fault arcing and fire risk.
- First live circuit trial in January 2015; in service 2016.

Status:


- Eight circuits in high fire risk areas now with DFCP trials.
- Six more high-risk circuits with DFCP in deployment.
- SDG&E planning 70 circuits by 2023 and 135 by 2028 and deploying next-generation wideband Ethernet radio system using private cells.

ComEd: Distribution Linear State Estimation

- Three-phase D-LSE using PMU data to perform fast state estimation (or state measurement)
 - Voltage and current vectors are considered as the state variable
 - Solve up to 60 samples/sec, compared to traditional SE solving once every few minutes
- Advantages and applications of D-LSE
 - Improves real-time resilience: A backup to the conventional SE solution if it fails to solve or SCADA data is not available
 - Helps identify and correct cases when bad or false data, including that injected by hostile actors, would have impact
 - Monitoring the microgrid and microgrid controller
 - Visualization, alarming/archiving, and metrics gathering/reporting
 - Identifying limited switching events (topology changes)


Source: ComEd and V&R

DG and Microgrid Islanding Detection and Restoration

- Promptly detect islanding conditions
- Avoid issues like Temporary Overvoltage (TOV), reclosing out of synchronism, and damage to DG equipment
- Sustain islanding operation using PMUs and controls
 - Power balancing among DERs
 - Automatic load switching and sectionalizing
 - Voltage and reactive power management
 - Large PV facility control & power curtailment
 - Restoration and synchronization with the grid Checks voltages, pre-fault loads to support, closing angles
 - Needs high-speed, cross-validated status and measurement reports to controller

DOE Industry Roadmap Objectives and Approach

- High-level guidance for development and investment of synchronized measurement technology on distribution circuits, while looking at technical requirements based on industry needs.
- The roadmap shows the activities required for successfully deploying synchronized measurement technology and critical applications for SDG&E and of other utilities (ComEd, ConEd, Dominion) with different needs.
- Helps DOE develop programs that can help the industry accelerate the grid modernization process by incorporating synchronized measurements and systems.

Roadmap for and Benefits of Deploying Sensor Technology for Distribution Network Modernization

- Identify and summarize major business drivers and needs.
- Industry outreach, including NASPI.
- Revise and update use cases and link them to key business drivers and needs.
- Identify system and product requirements and costs.
- Develop example budgetary cost estimates for typical deployment scenarios.
- Develop example roadmaps to help utilities accelerate the process - Applications, Infrastructure, and Processes.

Pilot programs

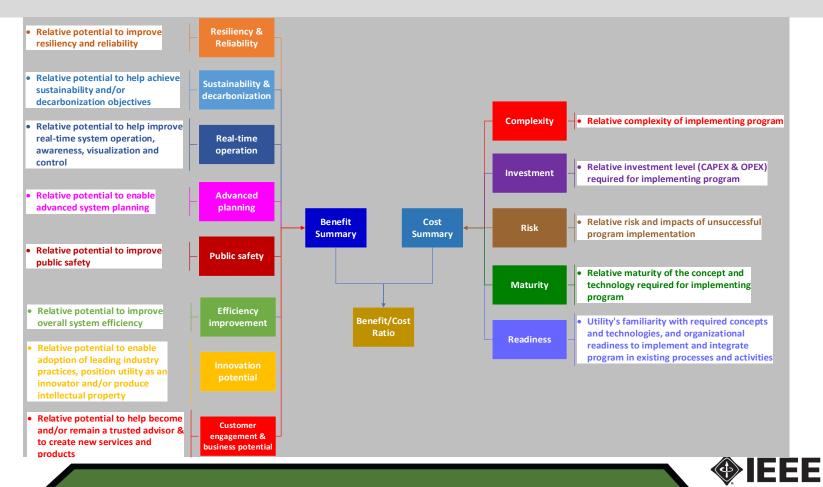
- Identify pilot programs for selected applications.
- Develop benefit-cost analysis for those pilots.

Distribution Use Case and Application Grouping (1)

PROPOSED GROUP NUMBER	PROPOSED APPLICATION GROUP DESCRIPTION	PROPOSED USE CASE NUMBER	NEW USE CASE DESCRIPTION
	Advanced Volt-VAR Control (AVVC)	A1	Conservation Voltage Reduction (CVR)
AG1	Advanced Volt-VAR Control (AVVC)	A2	Volt-VAR Control (VVC) of distribution systems
	Advanced Volt-VAR Control (AVVC)	A3	Volt-Var Optimization (VVO)
	Advanced monitoring of distribution grid	A4	Active and reactive power flow monitoring
	Advanced monitoring of distribution grid	A5	Voltage profile monitoring
	Advanced monitoring of distribution grid	A6	Monitoring of communications system/equipment performance with management metrics
AG2	Advanced monitoring of distribution grid	A7	Frequency monitoring
	Advanced monitoring of distribution grid	A8	Near real-time event monitoring (physical)
	Advanced monitoring of distribution grid	A9	Near real-time event monitoring (cyber)
	Advanced monitoring of distribution grid	A10	Phase angle monitoring for voltages and currents
	Asset management of critical infrastructure	A11	Power apparatus asset management
	Asset management of critical infrastructure	A12	Power apparatus functional monitoring
AG3	Asset management of critical infrastructure	A13	Monitoring and control of critical infrastructure and large customers
	Asset management of critical infrastructure	A14	Underground secondary/spot network monitoring and analysis
	Asset management of critical infrastructure	A15	Dynamic rating of distribution assets
	Wide area visualization	A16	Circuit status dashboards
AG4	Wide area visualization	A17	Integration of customer site FNET information
7.04	Wide area visualization	A18	Improved wide area situational awareness (T&D)
	Wide area visualization	A19	Visualization of dynamic system response
	DER integration	A20	Monitoring of intermittent DER
	DER integration	A21	Voltage impact assessment and mitigation due to high penetration of intermittent energy
	DER integration	A22	Voltage impact mitigation for high penetration of intermittent DG
AG5	DER integration	A23	Active and reactive reverse power flow management
	DER integration	A24	Customer/smart inverter control
	DER integration	A25	DER management and energy balancing with energy storage
	DER integration	A26	Load unmasking (behind-the-meter DER)
	Real-time distribution system operation	A27	Distribution state estimation
AG6	Real-time distribution system operation	A28	Closed-loop circuit operation
	Real-time distribution system operation	A29	DERMS implementation
	Real-time distribution system operation	A30	Improved demand response

Distribution Use Case and Application Grouping (2)

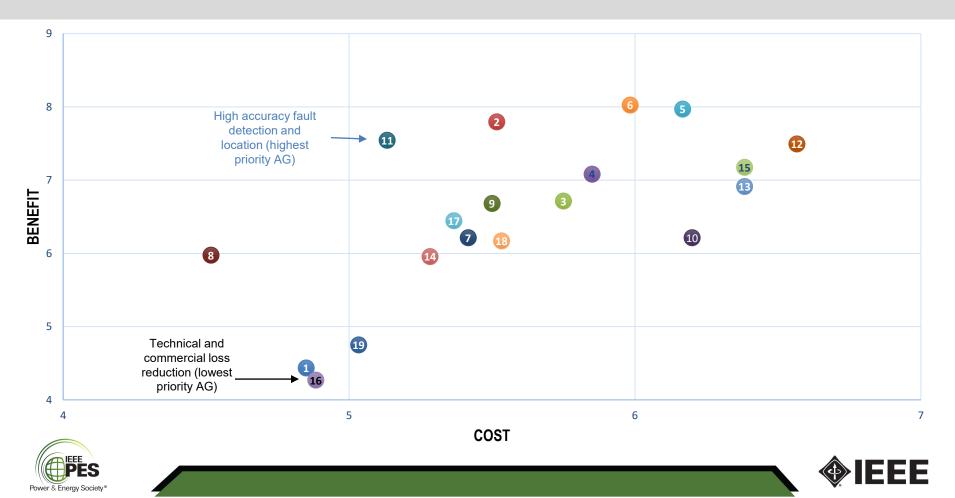
107	Enhanced reliability and resilience analysis	A31	Improved distribution reliability analysis
AG7	Enhanced reliability and resilience analysis	A32	Post-mortem analysis
	Advanced distribution system planning	A33	Phase identification
AG8	Advanced distribution system planning	A34	Distribution system computational model validation
	Advanced distribution system planning	A35	Short circuit study validation
	Distribution load, DER, and EV forecasting	A36	Load characterization, load modeling and load forecasting
AG9	Distribution load, DER, and EV forecasting	A37	DER forecasting
	Distribution load, DER, and EV forecasting	A38	EV Forecasting
	Improved stability management	A39	Voltage stability monitoring and control
AG10	Improved stability management	A40	Control instablility, hunting, or oscillation detection - voltage, var, switching
AGIO	Improved stability management	A41	Transient stability monitoring and control
	Improved stability management	A42	Fault Induced Delayed Voltage Recovery (FIDVR) detection
	High-accuracy fault detection and location	A43	Faulted circuit indication
	High-accuracy fault detection and location	A44	Incipient fault & failure detection
	High-accuracy fault detection and location	A45	High accuracy fault location
AG11	High-accuracy fault detection and location	A46	Communications failure location for maintenance dispatch
	High-accuracy fault detection and location	A47	High impedance fault location
	High-accuracy fault detection and location	A48	Open conductor fault detection
	High-accuracy fault detection and location	A49	Falling conductor protection
	Advanced distribution protection and control	A50	Reclosing assistance for fast circuit recovery after fault
AG12	Advanced distribution protection and control	A51	Current differential protection of feeder sections
	Advanced distribution protection and control	A52	Adaptive protection of distribution systems
	Advanced microgrid applications and operation	A53	Planned islanding and restoration of microgrids
AG13	Advanced microgrid applications and operation	A54	Advanced protection of microgrids
ACIS	Advanced microgrid applications and operation	A55	Advanced distribution system topology, automation and control (holonic grids)
	Advanced microgrid applications and operation	A56	Islanding detection for distributed generation (anti-islanding scheme)
	Improved load shedding schemes	A57	Improved load shedding schemes - frequency
AG14	Improved load shedding schemes	A58	Improved load shedding schemes - voltage
AGIA	Improved load shedding schemes	A59	Improved load shedding schemes - load flow based
	Improved load shedding schemes	A60	Load shedding real time compensative arming to balance 1547 compliant PV
AG15	Advanced distribution automation	A61	Load transfer and load balancing
AGIU	Advanced distribution automation	A62	Self-healing and enhanced FLISR operation


Distribution Use Case and Application Grouping (3)

	Technical and commercial loss reduction	A63	Circuit loss minimization		
AG16	Technical and commercial loss reduction	A64	Energy accounting		
	Technical and commercial loss reduction	Techical and commercial loss identification, calculation and reduction			
	Monitoring and control of electric	A66	Manitaring and control of electric transportation infrastructure		
AG17	transportation infrastructure	A00	Monitoring and control of electric transportation infrastructure		
AGII	Monitoring and control of electric	A67	Vahiala to Orid (V/20) manifering and control		
	transportation infrastructure	A07	Vehicle-to-Grid (V2G) monitoring and control		
	Integrated resource, transmission and	A68	Running sub-transmission (69 kV) and distribution in parallel		
AG18	distribution system planning and analysis	A00	running sub-transmission (os ky) and distribution in parallel		
AGIO	Integrated resource, transmission and	A69	Integrated resource, transmission and distribution system planning and analysis		
	distribution system planning and analysis	A09	integrated resource, transmission and distribution system planning and analysis		
	Power quality assessment and analysis	A70	Harmonics measurement		
	Power quality assessment and analysis	A71	Voltage sag and swell measurement		
	Power quality assessment and analysis	A72	Flicker measurement		
AG19	Power quality assessment and analysis	A73	Voltage and current imbalance measurement		
	Power quality assessment and analysis		Short-duration interruption measurement		
	Power quality assessment and analysis	A75	Harmonic state estimation/diagnosis		
	Power quality assessment and analysis	A76	Primary meter customer (e.g major customer monitoring -power quality)		

Prioritization: Benefit – Cost Ratio Calculation

Preliminary Prioritization Results


Prioritization results were used along with potential interdependencies among AGs to develop a proposed timeframe for implementation and overall roadmap

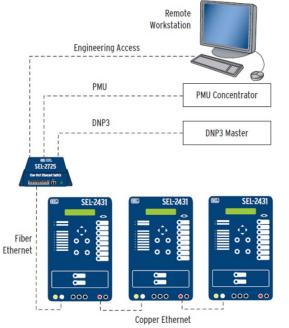
APPLICATION NUMBER	APPLICATION DESCRIPTION	BENEFIT-COST RATIO	BENEFIT-COST RATIO NUMERICAL	PRIORITY NUMBER
A11	High-accuracy fault detection and location		1.47	1
A2	Advanced monitoring of distribution grid		1.41	2
A6	Real-time distribution system operation		1.34	3
A8	Advanced distribution system planning	0	1.32	4
A5	DER integration	•	1.29	5
A9	Distribution load, DER and EV forecasting		1.21	6
A4	Wide area visualization		1.21	7
A17	Monitoring and control of electric transportation infrastructure	0	1.20	8
A3	Asset management of critical infrastructure		1.17	9
A7	Enhanced reliability and resilience analysis		1.15	10
A12	Advanced distribution protection and control		1.14	11
A14	Improved load shedding schemes		1.13	12
A15	Advanced distribution automation		1.12	13
A18	Integrated resource, transmission and distribution system planning and analysis		1.11	14
A13	Advanced microgrid applications and operation	0	1.08	15
A10	Improved stability management		1.00	16
A19	Power quality measurement	•	0.94	17
A1	Advanced Volt-VAR Control (WC)	O	0.91	18
A16	Technical and commercial loss reduction	٢	0.87	19

Prioritization Results – Application Benefit-Cost Ratio

Application Requirements – Critical for Product and System Development

Group Number	Application Group	Minimum Availability %	Maximum Latency (ms)	Minimum Report Rate (Hz)
AG1	AVVC	80	2000	1
AG2	Advanced monitoring of distribution grid	95	1000	30
AG3	Asset management of critical infrastructure	80	5000	1
AG4	Wide area monitoring and visualization	95	1000	30
AG5	DER integration	80	2000	1
AG6	Real-time distribution system operation	95	2000	1
AG7	Enhanced reliability and resilience analysis	80	5000	1
AG8	Advanced distribution system planning	95	5000	30
AG9	Distribution load, DER, and EV forecasting	80	5000	1
AG10	Improved stability management	99	150	30
AG11	High-accuracy fault detection and location	99.9	300	60
AG12	Advanced distribution protection and control	99.9	150	30
AG13	Advanced microgrid applications and operation	99	500	30
AG14	Improved load shedding schemes	80	5000	1
AG15	Advanced distribution automation	99	300	30
AG16	Technical and commercial loss reduction	70	5000	1
AG17	Monitoring and control of electric transportation infrastructure	80	5000	1
AG18	Integrated resource, transmission and distribution system planning and analysis	80	5000	1
AG19	PQ assessment and analysis	99.9	5000	120

Examples of Products



Power Sensors Ltd. MicroPMU (µPMU)

- High accuracy, but may be expensive to deploy
- Connects to single- or 3-phase, secondary distribution or substation PT.
- Local data storage on SD card as low-cost backup of or replacement for real-time streaming.
- Synchronized disturbance recordings.
- Precision calibrated inputs.
- PQ embedded functions and displays.

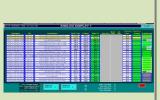

Schweitzer Engineering Laboratories (SEL) distribution circuit IEDs with built-in PMU function

- SEL-751 Feeder Protection Relay
- SEL-651R Recloser Control
- SEL-487E multiport switch controller & relay
- SEL-751 PQ Line Monitor
- SEL-2431 Voltage Regulator Control
- Others see SEL catalog.

Source: SEL

Key Deployment Success Factors

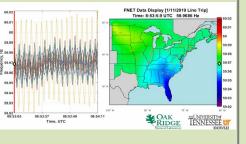
- Business case / roadmap / plan: Critical for securing funding for full deployment, ensuring the deployment is directed towards the end-state.
- Well-defined architecture & technical requirements for production-grade system with quality measurements
- Baselining to set norms: Historical Data/Simulations.
- Engineering and Operations guidelines and training
 Shortcuts impair deployment and reliable operation
- Data and information exchange:
 - Sharing information between T&D is needed for grid with renewables and storage.
 - Sharing data across each interconnection and among TOs is needed for transmission.



Synchronized Measurement Progression

Before

First PMU



Analog Displays

Products Now

2020

Standard feature (relays, DFR, controllers, monitors)

On major interconnections and generators

Standard SW tools included in EMS/SCADA

Primary use for monitoring and event analysis but deployed for control

Interoperability standards deployed

Distribution PMUs expansion due to DER

Improvements in communication infrastructure

2025

Tens of Thousands of PMUs world-wide

Integrated in standard business and operational practices

Integrated with EMS/DMS/SCADA or Independent system

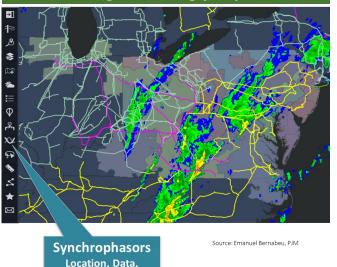
Higher data rates

Numerous applications in Distribution with different sets of requirements (POW)

Distributed comm. and processing architecture

Integration with various data sources (e.g. weather, GIS)

Fast and Adaptive Protection and Control



Summary of Next Generation Synchronized Measurement

- Expand the deployed systems, with enhanced ability to meet new business needs & requirements
 - Mitigate the risks of major system events by integrated existing and new sources of data, including severe weather conditions, fires, earthquakes, GIS data, etc.
 - Augment and backup EMS/DMS/SCADA systems
- Provide necessary tools for operating ever-changing grid

 Increased focus on distribution applications, products, and systems
- High security and reliability of deployed systems
- Support regulatory standards compliance

Linking weather conditions to power system operating conditions is becoming increasingly important

Contours. etc.

