PMU-Based Data Analytics Using Digital Twin and PhasorAnalytics Software (DE-OE0000915)

Philip Hart¹ (Presenter), Weizhong Yan¹, Tianyi Wang¹, Vijay Kumar¹, Pengyuan Wang¹, Gang Zheng², Maddipour Farrokhifard²

¹ GE Research ² GE Digital

Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number DE-OE0000915."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

The 2nd IEEE International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA) Virtual Event | May 24-27, 2021

GE Research – Big Data Analysis of Synchrophasor Datasets

• US Dept. of Energy assembled a phasor measurement unit (PMU) dataset from 443 PMUs across Eastern, Western, and Texas interconnects, along with event logs w/ 1000s of recorded events (FOA-1861, DE-OE0000915).

Overall program objectives:

 Apply big data, AI & ML technology and capabilities to extract new insights, such as validated grid event signatures (generator trip, line fault, etc.)

 Develop systems and tools for effective grid operation and management, with overall goal of improving system resiliency and reliability

Phasor Measurement Units and Synchroghasor Data Bows in the North American Power Grid				
	Interconnect	# PMUs	# records	Compressed data size (Terabytes)
AN REAL AND	IC_A	212	160,809,031,796	2.9
	IC_B	43	93,353,826,102	4.7
Liged USLater	IC_C	188	241,437,700,843	11.0
Right Ladie Star	Total	443	495,600,558,741	18.5 TB

[Image courtesy of NASPI, https://www.naspi.org/]

The 2nd IEEE International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA) Virtual Event | May 24-27, 2021

High-Level Technical Strategy:

GE Research – Data Pre-Processing and Feature Generation

Raw signal cha

f (frequency)

f (frequency)

vp_m (voltage magnitude)

vp_m (voltage magnitude)

vp_m (voltage magnitude)

ip m (current moonitude)

ip m (current mognitude)

ip_m (current magnitude)

p (active power)

Raw Data:

Feature name

f_filter_p2p

vm_diff_dn

vm_diff_up

vm_p2p

im_std im_diff_dn

im_RP

p_diff_up

Sample features

Data Quality (ICC):

of rows with 'status' !=0
 # of rows with >0 'unreasonable' values
 # of rows with >0 non-numerical values
 # of rows with >0 missing values

Feature Generation using Customized Big Data Platform

Descriptio

Maximum step down in 0.1 second

Peak-to-peak value after filtering out 1^e principal component among all

PMUs; used to characterize asynchronization with peers.

Maximum step down in 0.1 second

Maximum step up in 0.1 second

Peak-to-peak value

Standard deviation

Maximum step down in 0.1 second

Exhibition of strong frequency components in the signal; used to characterize

oscillations.

Maximum step down in 0.1 second

Feature Time-Series

Impact of Big Data Platform Performance Optimizations:

Overall: 60+ feature functions to be calculated per every 5 seconds of raw data

Across all PMUs in an interconnect; grouped into 7+ feature batches

Resulting productivity gains offer power and grid systems researchers significant advantages

- e.g., 89 million feature values per PMU in IC_B (23.5 GB) in ~ 50 minutes
- flexible feature store (add, update, delete, query feature batches)

The 2nd IEEE International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA) Virtual Event | May 24-27, 2021

1600

400

Performance Optimizations

Effect of fast Pandas <--> Spark conversion

on Feature Generation time (lower is better)

IC B

Interconnect (and execution strategy

IC,C

IC A

GE Research - Normality Modeling and Signature Identification Example

GENERATOR EVENT		$\left \right $	TRANSFORM	IER EVENT	-
Feature Name	Feature Score		Feature Name	Feature Score	
f_dip_area	41.39		vm_p2p	772.79	
f_p2p	38.76		vm_std	619.73	
vm_NSR	11.98		vm_min	260.72	
f_bump_area	10.53		vm_step_mag_3	201.98	
vm_diff_dn	9.45		f_diff_up	135.74	
vm_step_ind_3	7.13		vm_diff_dn	76.62	
f_diff_dn	5.70		vm_dip_area	71.16	
vm_diff_up	5.63		vm_diff_up	69.56	
vm_mean	3.61		vm_step_mag_1	39.70	
vm_step_mag_2	3.13		vm_step_ind_3	21.61	
vm_max	2.87		vm_step_mag_2	20.95	
vm_dip_area	2.60		f_diff_dn	8.17	
vm_std	2.16		f_dip_area	6.45	
vm_step_mag_1	1.04		f_bump_area	5.38	
vm_p2p	0.95		f_p2p	2.50	
vm_step_mag_3	0.95		vm_mean	1.86	
vm_step_ind_2	0.32		vm_NSR	1.59	
f_diff_up	0.27		vm_step_ind_2	0.36	
vm_bump_area	0.27		vm_max	0.13	
vm_min	0.20		vm_bump_area	0.05	
vm_step_ind_1	0.00		vm_step_ind_1	0.00	

- 1. 'Overabundance of features' is first generated
- Then, a trained normality model is used to rigorously score features based on relevance to event

Event Signatures Identified:

- Generator event:
 f_dip_area, f_p2p, ...
- Transformer event:
 Vm_p2p, vm_std, ...

The 2nd IEEE International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA) Virtual Event | May 24-27, 2021

GE Research - Event Signatures, Validation, and Conclusions

				line	line	line not	
	generator	transformer	line fault	equipment	lightning	lightning	oscillation
f_diff_dn	0.184	0.006	0.026	0.001	0.023	0.01	0.004
f_filter_p2p	0.115	0.007	0.026	0.002	0.014	0.009	0.024
im_std	0.291	0.072	0.045	0.056	0.05	0.047	0.152
im_RP	0.175	0.084	0.017	0.052	0.019	0.018	0.047
im_diff_dn	0.115	0.15	0.071	0.127	0.082	0.092	0.188
im_diff_up	0.036	0.089	0.039	0.123	0.093	0.126	0.008
vm_diff_dn	0.091	0.306	0.474	0.415	0.39	0.357	0.299
vm_diff_up	0.064	0.318	0.366	0.34	0.296	0.26	0.004
vm_p2p	0.085	0.188	0.174	0.184	0.162	0.127	0.21
vm_step_mag_1*	0.017	0.046	0.166	0.075	0.035	0.084	0.158
vm_step_mag_2	0.044	0.128	0.147	0.056	0.048	0.106	0.142
p_diff_dn	0.081	0.125	0.043	0.065	0.073	0.174	0.412
p_diff_up	0.078	0.201	0.032	0.059	0.063	0.115	0.021
q_diff_dn	0.015	0	0.089	0.044	0.094	0.152	0.045

Example Event Signature Results (Interconnect C):

- Grid event signatures identified for >15 types of grid event across Eastern and Western Interconnects. Signatures give insight into *event type, location, magnitude, & duration.*
- Signatures are 'transparent' & comprised of features suitable for real-time computation
- Developed binary event classifiers + decision fusion for a reduced event subset, applied it to dataset to discover and classify tens of thousands of unlabeled events (>90% accuracy)
 - Example—Eastern Interconnect two-year test dataset: 174 events 'generator' events & 14,668 'line' events discovered and characterized

The 2nd IEEE International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA) Virtual Event | May 24-27, 2021